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I. INTRODUCTION

Lateral heterogeneity in the distribution of membrane proteins is a prominent
structural feature of biological membranes that is essential for many aspects of
membrane function.'? For example, facilitated transport is coupled to differ-
ences in protein composition between the apical and basolateral surfaces of
epithelial cells;? synaptic transmission is dependent on the aggregation of AChR
at the neuromuscular junction;* and action potential propagation in myelinated
nerve fibers is facilitated by the collection of ion channels at nodes of Ranvier.®
Since heterogeneity in protein distribution is so important and ubiquitous,
considerable effort has been directed at identifying the forces that act to maintain
it. Certain aspects of this topic will be the focus of this chapter.

It has been well established in the literature that specific biological mecha-
nisms often act to regulate protein organization, These mechanisms include
attachment of protein to the cytoskeleton, confinement of protein to domains
created by the cytoskeleton and tight junctions, and interactions of proteins with
molecules in the extracellular matrix and in the membranes of adjacent cells.
These same factors play a role in determining protein (and lipid) mobility as
well. 3744

For systems in which protein concentrations are high, such as biological
membranes, nonspecific (e.g., electrostatic) interprotein interactions can also
play arole in dictating organization, although this fact is sometimes overlooked.
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For example, if protein molecules attract, they will tend to aggregate, and their
distribution will become more heterogeneous. Conversely, if protein molecules
repel, they will tend to disperse, and their distribution will become more
homogeneous. These qualitative arguments can be made quantitative and the
results used to deepen our understanding of membrane behavior.

In this chapter, we establish a quantitative connection between nonspecific
protein-protein interactions and protein organization. In general, the systems
under consideration will be simple, consisting of lipid and one species of protein
present at high concentration. Analysis of such simple systems illustrates the
important physical principles underlying protein organization and provides a
foundation upon which to formulate descriptions of organization in complex
biological membranes. We begin by discussing the origins of nonspecific
protein-protein interactions. We then introduce formulae from fluid theory that
relate the short range organization of membrane proteins tononspecific interprotein
interactions. The utility of the fluid theoretic relationships will be illustrated by
showing how they can be used to measure the real forces between proteins in
membranes and to compute thermodynamic and kinetic properties of the
membrane. We conclude by considering the effects that protein-protein interac-
tions have on long range organization in membranes.

IL. ORIGINS OF PROTEIN-PROTEIN INTERACTIONS

Although the relevant data are somewhat lacking, it appears likely that
proteins in membranes interact much as do proteins in aqueous solution. In this
section, we briefly describe three relatively nonspecific mechanisms through
which membrane proteins might interact: excluded-volume, electrostatic, and
lipid-mediated. The first two mechanisms arise in descriptions of interprotein
interactions in three-dimensional aqueous solutions; the last does not.

A relatively simple description of interprotein interactions will be adopted.
Specifically, we will focus on a two-dimensional planar projection of the
membrane. It will be assumed that a “central-force” description is applicable,
i.e., that the energy of interaction between two proteins depends only on their
center-to-center separation, r, in the plane and not on their relative orientation.
Thus, the interactions studied will have no angular dependence or, alternatively,
the angular dependence will be averaged over by integration. In this simplified
picture, the pair potential describing the interaction between two proteins can be
denoted u(r). The associated pair force, f{r), can be found by differentiation:

du(r
fr)=-20) i
dr

In addition, it will be assumed (unless otherwise noted) that the total interaction
energy of a system of N proteins, U,, is “pairwise additive,” i.e., that the total
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poteatial is simply the pairwise sum of the interaction potentials between each
pair of neighbors. Hence,

UN = Zu(r;.j) @)

i<j

where r;; denotes the separation between the ith and jth proteins, An analogous
expression is obeyed by the pair force. It is also assumed that the various
interactions, e.g., excluded-volume, electrostatic, and lipid-mediated, between
a pair of proteins are pairwise additive. The origins and significance of pairwise
additivity will be considered in more detail in subsequent sections.

Of course, at a detailed level, the interactions between membrane proteins
will depend on the particular proteins and lipids under consideration, Moreover,
in certain cases, such as dimerization or crystallization, very specific short range
attractions, including hydrogen bonds, salt bridges, and covalent interacticns,
may play animportant role indictating behavior.'> However, to capture the essence
of the relationship between interactions and organization, we need explicitly to
discuss only “generic” interactions and can suppress reference to very specific
types of interprotein interactions. Such an approach has been shown to reveal
many of the important features of other membrane phenomena, including lipid-
protein interactions'® and protein diffusion.'* We now turn attention to charac-
terizing these generic interactions.

A. Excluded-Volume Interactions

The most basic interaction between proleins arises [rom their finite volurne:
proteins can approach one another to contact, but they cannot overlap. This
excluded-volume interaction can be written as

u(ry={5 5 )

r>d

where d is the separation between the proteins at contact. The excluded-volume
interaction is clearly short range, yet it can profoundly affect the activity,!?
mobility,'* and long range orgunization of proteins within the membrane.
Because of its simple functional form and ubiquitous nature, the excluded-
volume interaction is the most widely used interaction in studies of the relation-
ship between protein-protein forces and protein organization and mobility,

B. Electrostatic Interactions

Electrostatic interactions, which probably dominate the protein-protein force
atlong range, arise from interactions among charged amino acid residues on esch
protein. The magnitude and functional form of the electrostatic interaction are
determined by the number and location of these charges, as well as the physical
properties of the intervening environment. For “typical” membrane proteins that
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span the bilayer, charge may be located in a variety of environments: the
cytoplasm, the membrane, and the extracellular space. It is, therefore, necessary
to specify how the functional form for the electrostatic interaction between two
residues will depend on their location.

Consider two limiting cases. First, suppose that two residues on two different
proteins are each located in an electrolytic medium, such as the cytoplasm or
extracellular space. The potential between the two charges is then screened by
counterions and can be described by the Debye-Hiickel equation,'#?

({2

€&,

u(r)= exp(-xr) 4)

if one neglects the membrane/water interface. Here q is the charge on each pro-
tein, &, is the relative permittivity of the aqueous phase, &, is the permittivity of
vacuum, and //, is the Debye length, an ionic strength dependent length constant
thatdetermines the range of interaction. In contrast, suppose that the two residues
are each located in a low dielectric medium, such as the membrane interior. The
potential between two charges is then given by the expression2?

2
e (5l ) ()
u(") nemeodkglsm( d sin p KO p )

where d is the thickness of the membrane, €, is thé relative pemmittivity of the
membrane, (0,0,/) and (r,0,2) are the cylindrical coordinates of the charges, and
K, isamodified Bessel function. In Equation 5, it is understood that z can assume
the value / ord-I and that one membrane/water interface is located at z=0. When
r>d, this potential falls off very rapidly with r. An expression for the interaction
of twocharges located on opposite sides of the membrane/water interface has not
been derived.

In principle, it is not difficult to calculate the total electrostatic interaction
energy between two charged proteins: it is simply given by the sum of the
interaction energies between each pair of charges the proteins contain (if
pairwise additivity holds). For residues in the cytoplasm or extracellular space,
Equation4 isapplicable, and for those in the membrane, Equation S is applicable.
However, in practice, the mathematical form for this total interaction can become
very complicated if the parameter describing the separation of the two proteins
is taken to be the vector connecting their center-to-center coordinates, as in a
central-force description. (This is because the individual charged amino acids on
the proteins will not necessarily lie along this vector; see Figure 1.) The total
electrostatic interaction can become particularly complicated when the two
proteins are close together, In this case, the closest pairs of charges might be
expected to dominate the overall interaction, and the interprotein force could be
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FIGURE 1. Electrostatic protein-protein interactions. Positive and negative charges are indicated
by + and -, respectively. The strength of the electrostatic interaction depends on the separation and
environment between the charges, as well as the distribution of counierions und charged lipids.
Approximale analytical expressions describing the force in two special cases are given in the text,
In a central-force description, all forces are assumed to act along the axis (dushed line) sepurating
protein centers, With the particular orientations und separations of charges depicted in the figure, the
proteins would probably interact anructively and the force would not be central. However, if the
proteins were separaled by a large distance and if the force were averaged over orientation (to reflect
rotation), the interaction would be central and repulsive since the proteins bear identical total churge.,
Since it is unlikely that a measured protein-protein force could ever be uniquely fit theoretically,
studies of protein-protein interactions have concentrated either on churacterizing more unique forms
of interaction, such as the lipid-mediated interaction, or on understanding the influence of u given
interaction on protein and membrane behavior, independent of the origin of the force.

attractive or repulsive even for proteins whose total charge is identical. (Intuition
might lead one to expect that, for like-charged proteins, the interaction must
necessarily be repulsive.) Moreover, these short range forces typically will not
act precisely along the vector between protein centers and will thus not satisfy
the central-force criterion.

However, under certain specialized conditions, the total electrostatic interac-
tion may adopt a relatively simple form. For example, if the protein has a radially
symmetric charge distribution, many terms (e.g., the dipole term) in the multi-
pole expansion of the electrostatic potential will vanish. Such proteins will
interact through a potential that more nearly approximates a central (1/r) po-
tential, like point particles, Moreover, at long range, all proteins may interact like
point particles, located at the coordinates given by their centers-of-mass and with
total charge given by the sum of their individual charges. If a point-charge
approximation is valid, the familiar results will hold: like-charged proteins will
interact repulsively, and unlike-charged proteins will interact attractively.

C. Lipid-Mediated Interactions
Another long range contribution to the protein-protein force, the lipid-
mediated interaction, may arise 0 minimize protein-induced perturbation of
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adjacent “boundary lipids” (reviewed in Reference 16); see Figure 2. Surpris-
ingly, the source of the perturbation need not be specified, although it is usually
thought to arise from conformational changes in the lipid that are required to fit
hydrophobic and hydrophilic domains at the lipid/protein interface.2! In most
cases, the lipid-mediated interaction is predicted to be attractive: lipid perturbed
by protein is assigned an unfavorable free energy; protein aggregation driven by
an attractive lipid-mediated interaction decreases the total amount of this
perturbed lipid and, hence, the free energy of the membrane. However, if the
induced perturbations differ sufficiently for two unlike proteins, the lipid-
mediated interaction can become repulsive, These arguments are similar in style
to those invoked in descriptions of surface tension and the hydrophobic effect.

The lipid-mediated protein-protein interaction has been characterized theo-
retically; ' however, a functional form for the interaction will not be presented,
since it is both complicated and model dependent. Instead, the following
qualitative points are noted. First, the interaction is probably not strong: the
theories predict a maximum strength of interaction on the order of a few times
kgT or less, where kg is Boltzmann's constant and T is the temperature. Second,
the range of the interaction is predicted to be about twice the distance over which
lipids are perturbed by individual proteins (probably twice a few lipid layers,
although new calculations?? suggest that the range could be longer). Finally, the
interaction may not satisfy the usual pairwise additivity assumption. For ex-
ample, at high protein density, the lipids perturbed by different proteins may
begin to overlap, and the total amount of perturbed lipid then clearly will not be
the sum of the lipid perturbed by each protein; see Figure 2. For more information
on the theories, the reader is referred o Reference 16; the growing experimental
evidence supporting the notion of lipid-mediated interactions is reviewed in
subsequent sections.

D. Effective Interactions

Inthe previous section, we noted that interactions between proteins and lipids
can influence protein distribution and that this phenomenon can be explained by
postulating the existence of a lipid-mediated protein-protein force. In fact, it is
generally true that the distribution of a solute in a solution will be influenced by
the properties of the solvent, as well as by the direct forces that act between solute
particles. Unfortunately, explicitly treating such solvent-mediated effects is a
formidable theoretical problem, and thus it is standard to adopt the so-called
“McMillan-Mayer description” of fluids, in which only the solute is treated
explicitly.'® If this description is adopted, all of the formulae that relate
interactions to organization and mobility in a one-component fluid can be
applied to a multicomponent (solute + solvent) fluid, if the solute-solute
interaction is first averaged over solvent effects. (Such averaging can lead to
deviations from pairwise additivity.) In the sections that follow, we will adopt the
McMillan-Mayer formalism and will use the terminology “effective interaction™
to remind the reader that the force appearing in all formulae has been averaged
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(€)

FIGURE 2. Origins of lipid-mediated protein-protein interactions. Proteins are again viewed
normal to the plune of the membrane. (A) Proteins are surrounded by unnuli of “perturbed” lipids
(black head groups). The perturbations urise as lipids maich headgroups 1o hydrophilic protein
domains (dark stippling) and hydrocurbon chains to hydrophobic protein domains (light stippling).
(B) If the perturbution of lipid is energetically unfavorable, then the 1otal amount of untuvorably
perturbed lipid can be minimized by protein aggregation, which allows proteins 10 share perturbed
lipid. (For the particular longitudinal section depicied here, there are two less perturbed lipids when
the two proteins aggregate.) This aggregation is effectively driven by an auractive lipid-mediated
protein-protein interaction. If the perturbation of lipid is sufficiently different for unlike proteins,
close association of protein can be energetically less favorable than wide separation, and proteins will
spread apart (not shown). This dispersal is effectively driven by a repulsive lipid-mediuted protein-
protein interaction. (C) At very high protein concentrations, ali of the lipid in the membrane may be
perturbed. Protein movement then can neither increase nor decrease the total amount of perturbed
lipid, and the lipid-mediated interaction is said to be suturated.

over solvent effects; the force may thus contain both direct and indirect (solvent-
mediated) components.

III. SHORT RANGE PROTEIN ORGANIZATION

Over distance scales that extend out to several times the average interprotein
spacing, protein molecules exhibit a short range organization that is profoundly
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affected by protein-protein interactions. Here a theoretical formalism is devel-
oped that relates short range protein organization to the forces that act between
proteins. The predictions of this formalism are explored through numerical
simulation, Applications to biological membranes are made using information
on short range protein organization that can be obtained from freeze-fracture
electron micrographs,

A. Theoretical Description

Consider a paich of membrane containing a protein species, assorted lipid
species, water, and other components. Assume that this patch can be modeled as
an equilibrated fluid, about which one has information only on the center-of-
mass coordinates of the protein species. It is now shown that statistical summa-
ries of the center-of-mass positions of the proteins can be made in terms of
probability densities known as distribution functions. These, in tumn, can be
related to protein-protein forces through the statistical mechanical theory of
fluids,'#!92334 which is a fairly natural theory to apply to a fluid-mosaic
membrane.?

1. Distribution Function Formalism

Distribution functions describe the probability of finding certain equilibrium
arrangements of molecules in a fluid. Specifically, the probabilily density
p(’"(' 00000 ) is a measure of the probability of finding a particle at 7, a particle
atr,,..., and a particle at 7 in a fluid of N indistinguishable pamclcs at equi-
librnum We argued qualuauvcly in the Introduction that a distribution such as
p"”(?,.....?j') should be related to the interactions between the particles. A
rigorous version of that argument yields the following relationship:

(m = N! cxp[—UN (Fl""'FN)/kuT]dFul”'d’—'N
(WRARLIN :

(6)

where Zy is the configuration integral of the canonical partition function. The
magnitude of the interaction dependence is thus scaled by the thermal energy,
kgT, in the system. Note that only the positions of the n (protein) particles of
interest are specified; the positions of the remaining N-n particles are eliminated
by integration. In addition, Equation 6 has already been integrated over solvent
degrees of freedom, making Uy, an effective interaction energy in the McMillan-
Mayer sense.

Despite these simplifications, Equation 6 remains a complicated relationship
that does not immediately impart an intuitive feeling for how interactions affect
distribution. However, some physical intuition can be developed by analyzing
Equation 6 in more detail. Consider first what distribution functions look like in
the absence of interactions. In this case Uy = 0, and Equation 6 reduces to
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PR e )= NN =1).c. (N = VN7 (V¥ ] = N7 V" =" (T)

where p is the average number density. Thus, for an ideal (noninteracting) fluid,
pw (F ve.oT | i independent of position and equal to p” when N >> n (which is
almost always the case). In contrast, consider next what distribution functions
look like in the presence of interactions. In this case, p* (F] S ) is dependent
on position, and in the large N limit it is possible to specify this position depen-
dence by defining a correlation function, g {F,....T | by

pO(-n7 ) 20" (5o F) ®

Thus, for nonideal (interacting) fluids, the quantity g (Fl 00017 ) givesasimple
measure of the deviation of p™ {7:,....7. ) fromp". In fact, Equation 8 shows that
values of g (7', .....?:,) that differ from unity are indicative of nonideal corre-

lations in particle positions.

2. Examples of Distribution Functions

The n = / distribution function, gt" (i"l ) describes the spatial variation in
single particle density. In a crystal, a particle is most typically located at a lattice
site, and gt/ r, ) will have pronounced maxima at these locations. However, in
a homogeneous fluid (ideal or nonideal), a particle is equully likely to be found
at any point, and gV )(Fl) = | forall 7.

The n = 2 (pair) distribution function, g (Fl .?2). describes positional cor-
relations between pairs of particles and is consequently more complicated than
g (Fl ) Inacrystal, g ('r'l Fz) will have pronounced maxima whenever 7, and
7, correspond to the locations of lattice sites. In contrast, in a homogeneous fluid,
g? (Fl .7'2) is a complicated function of 7,7, particle density, temperature, and
the interparticle force, as will be seen in subsequent sections. The pair distribu-
tion function can be simplified by rewriting it in a conditional form, g(7 ), where
pg(F)dr gives the number of molecules in an area dF about 7 given that there
is a molecule at the origin. In a homogeneous fluid, the pair correlation function
is termed the radial distribution function, written simply as g(r), where r = | -
n |; see Figure 3. (The vector 7 here is replaced by its magnitude, r, because in
a homogeneous fluid the distribution does not depend on direction.) The radial
distribution function has played a pivotal role in the theory of three-dimensional
fluids for two reasons. First, it can be determined experimentally from scattering
data. Second, thermodynamic functions and transport properties can be writien
in terms of g(r) and u(r) if the total interaction energy is pairwise additive.

High-order distribution functions (n 2 3) relate positional correlations among
still higher numbers of particles. In a homogeneous fluid, the conditional triplet
correlation function can be written g (r,s,9), where s = | n-r landg=17-F;
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FIGURE 3. Polar coordinate system used for two and three-particle distribution functions. The
positions of particles 1, 2, and 3 are specified by the vectors /7, 73, and 73, respectively, relative to
an arbitrary origin (not depicted). The relative positions of 1,2, and 3 are specified by the vectors 7* =
Py, ¥= 737y and §= F3-+7, with magnitudes r, s, and q.

see Figure 3. For three-dimensional fluids, such high-order distribution
functions cannot normally be measured, and it is usually assumed that the
“superposition approximation” holds, i.e., that

g9 (r.5.9) = 8(r)e(s)g(q) ©)

Incontrast, for two-dimensional membrane systems, gu) (r.s.q) can be measured,

and this facilitates a more accurate determination of the protein-protein

force?6-29 as well as a more complete description of membrane protein diffu-
ion.30

sion.

3.. Multicomponent Distribution Functions

All of the distribution functions mentioned above can be generalized to
describe systems containing two or more species of protein. The associated
equations are not presented; instead it is simply noted that the generalization
requires distinguishing each molecular species present. For example, if there are
two species of protein, A and B, then three radial distribution functions must be
introduced: g(ra4), 8(rss), and g(r45). These quantities determine the probability
of finding a particle of type i at a distance r;; from a given particle of type j. (By

symmetry, g(ras) = (r54).)

B. Computation of Distribution Functions

We now turn attention to describing methods used to calculate distribution
functions from experimental data. For simple three-dimensional systems, the
radial distribution function can be determined experimentally from scattering
data by computing the Fourier transform of the structure factor,!8:1924
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Alternatively, tor soine two-dimensional systems in which molecular positions
are known, distribution functions of arbitrary order can be determined directly
using their probabilistic definitions. This latter procedure is described here for
the radial distribution function; the generalization 1o high-order distribution
functions is straightforward.*!

As noted above, the quantity pg(r)A is the number of particles in an annulus
of area A bounded by r—dr/2 and r + dr/2 ubout a given central particle. Therefore,
if molecular positions are known, g(r) may be calculated using the following
prescription. Approximate the infinitesimal increment dr by a small bin of finite
width Ar, which ideully is only a few percent of the average interparticle spacing
inthe system. Focus attention on a particular particle and value of r;= n;Ar (where
n;= 1, M), and count the number of particles in the annulus bounded by r~
Arf2 and r;+ Ar/2 about the chosen particle. Divide this number by pr|(r; + Ar/
2)%— (r~Ar/2)?], which is the expected number of particles in the annulus. For
each value of n;, repeat this procedure forcach particle in the system, and average
the results, Equation 10 summarizes the algorithm.

glr)=< g(ri = n’,Ar) >

number of panticles in unnulus bounded by rr — Ar /2 and r + Ar /2 (10)

=
&

(7 + & 12)" = (1, - a712)']

A schematic view and a few caveats are presented in Figure 4.

To determine how physical properties of the system, such as particle densily
and interaction potential, affect distribution functions, it is necessary 10 have
some method of generating molecular coordinates. This can be accomplished
numerically through Monte Carlo simulations and experimentally through
freeze-fracture electron microscopy. The numerical approuch is discussed first.

C. Monte Carlo Simulations

The theory presented previously rigorously connects the short range orga-
nization of proteins, us embodied in distribution functions, 10 the effective forces
that act between proleins, given that a few assumplions about the nature of the
membrane hold. Unfortunately, the theorics are quite complicated and can be
solved analytically for quantities such as the radial distribution function or the

effective interprotein force only at low protein density (p small). However, if

numerical methods are exploited, one can obtain a wealth of information about
distributions or effective forces for fluids of arbitrary density. We now describe
a numerical method, Monte Carlo simulation, that is well suited lor simulating
the properties of fluids and discuss what numerical simulations have revealed
about the short range organization of interacting particles in two-dimensional
fluids such as membranes,
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e

FIGURE 4. Computation of radial distribution functions. Distribution functions can be computed
from particle positions by implementing the prescription given in Equation 10 as follows. Here the
unit of length is taken to be the particle diumeter, d. Consider first a single annulus (indicated by
stippling) of radius r; = 1.55d and width dr = 0.39d about u single protein (indicated in bluck). (Note
thut the width of the annulus has been much exaggerated for clarity.) The uveruge density of the
configuration, p = 0.58/d?, is the number of purticles in the box, & = 70, over the urea of the box, A
= 12042 Since the annulus contwiny the centers of three proteins, the density of proteins in the,
annulus, p =0.79/d? is simply 3 over the area of the annulus, 3.K0d2, Hence, the ratio of the observed
1o the expected number of proteins in the given annulus is [0.79/d2/10.58/d%] = 1.36. If this com-
putation is repeated for all purticles in the configuration and the results averaged, one will obtain
8(1.55d). Clearly, edges require special consideration and can be handled in a variety of ways.}'¥?

1. Overview of Algorithm

Monte Carlo is an efficient method of determining ensemble-averaged,
equilibrium properties of a system, such as distribution functions. This is
accomplished using an ingenious strategy known as “importance sampling.”
Probability theory stales that averaged quantities can be obtained by summing
(or integrating) the variable of interest against an appropriate probability
distribution, which for the canonical ensemble is the Boltzmann distribution,
exp[-Un/kgT]. Thus, to determine an ensemble-averaged distribution function,
Equation 10 must be evaluated for many configurations (corresponding to a
desired density and interaction potential) and the results then weighted by the
Boltzmann factor and averaged. If configurations are chosen randomly, most
will be far from equilibrium and contribute only slightly to the average,
However, if configurations are chosen with a probability given by their Boltzmann
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factor (i.e., by importance sampling), almost all will be near equilibrium and all
will contribute equally to the average. The difference in efficiency between
random sampling and importance sampling can be astronomical: easily a googol.

Monte Carlo simulations are inevitably performed on a computer, although
different algorithms can be employed to implement the importance sampling.
The classic is the Metropolis Monte Carlo algorithm.3? To simulate protein
positions using this approach, proteins are initially assigned arbitrary positions
in some (two-dimensional) space. The number of protcins and the area of the
space determine the density. Of course, this arbitrary initial configuration will
not necessarily be near equilibrium for the interaction potential and density of
interest, and so protein positions must be changed unlil equilibrium is ap-
proached. This is accomplished by randomly trying to move particles in the
system and then comparing the energy of the new “trial” configuration to the
energy of the old configuration. If the changes in position lower the energy of the
system, they are automatically accepted. If the changes raise the energy, a “dice-
roll” rule employing the Boltzmann factor is used to determine acceptance or
rejection of the new configuration. If this procedure is repeated many times, it
can be shown that the configurations eventually approach equilibrium corre-
sponding to the chosen interaction potential and density.>? Moreover, once this
has occurred, all subsequent configurations generated by the technique will also
be near equilibrium. Thus, properties computed from many such configurations
will be canonically averaged, according to the Boltzmann distribution.

Monte Carlois a powerful technique that has literally revolutionized the study
of fluids. However, the technique can be subtle and a word of caution is in order.
The importance-sampling algorithm makes fundamental assumplions about the
physics underlying equilibrium. The Metropolis algorithm describes the canoni-
cal ensemble: closed systems with constant area and temperature. Other algo-
rithms can be constructed to describe other ensembles. The chosen algorithm and
ensemble must describe the system under study; otherwise, the results can be
invalid, as shown in Reference 33. The fundamentals of Monte Carlo are
reviewed in References 19 and 24, while applications to biological membranes
are reviewed in Reference 34.

2. Results

Monte Carlo techniques have been used to simulate the effects that protein
density and interparticle interactions have on the equilibrium distribution of
membrane proteins; here we summarize the pertinent simulation results and
explore their implications. In the Appendix, we briefly discuss relevant results
obtained using related simulation techniques.

Effective interactions were studied that model the effects of both repulsive
and attractive interactions on protein organization, The excluded-volume poten-
tial (Equation 3) was taken as a model of “*hard” repulsions. An inverse-power-
law potential was taken as a model of “soft” repulsions and long range
attractions: 22933
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u(r) =271 4)k,T[(c 1) = (o / 1)*] an

Here o is where the potential crosses zero, and (*/5)'2a is where the potential
attains its minimum value of ky T, The effects of attractions on organization were
determined by comparing simulation results based on Equation 11 with simula-
tion results based on a potential with identical repulsions but no attractions
derived from a Weeks-Chandler-Andersen decomposition®® of Equation 1. Both
long range potentials are shown in Figure S. Simulation results are available in
terms of particle configurations, which may be examined visually, and radial
distribution functions, which provide a statistical summary of the coordinate
information.

The particle configurations provide a qualitative picture of protein organiza-
tion in membranes; see Figure 6, Forexample, the configurations clearly suggest
that interactions lead to short range ordering within the membrane, since
particles do not approach one another very closely. In addition, the configura-
tions provide evidence that interactions lead to some long range ordering. For
example, protein distribution in the presence of attractions appears to manifest
a tendency toward “patchiness."”

Toanalyze organization more quantitatively, radial distribution functions can
be computed from the particle configurations using the prescription given in
Equation 10. Typically, results from many independent configurations are
averaged to get good statistics. The distribution functions are typical of those
found for interacting fluid systems; see Figure 7. At small separations, the
probability of finding a second particle is zero, ‘since the particles cannot
approach one another very closely due to the strong short range repulsions. Thus,

T
o0 8(r)=0 (12)
At large separations, the probability of finding a second particle is random, since
the interaction is of finite range and correlations in particle position do notextend
indefinitely over space. Thus,

im g(r)=1 (13)

r—yos

At intermediate separations, there are regions of enhanced and diminished
probability of finding second particles. These “coordination shells” are manifest
as “peaks” and “valleys" where the values of g(r) are greater than and less than
one, respectively.

The Monte Carlo data show how differences in density and interaction
potential affect g(r); see Figures 6 and 7. At low protein density, particle
configurations and radijal distribution functions derived from the attractive and
repulsive potentials shown in Figure 5 differ considerably, whereas at high
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10.0

FIGURE $. Analytical pair potentials employed in Monie Carlo simulations. Purely repulsive
(dotted) and attractive-plus-repulsive (solid) interactions were defined by Equation | | and a Weeks-
Chandler-Andersen decomposition.?” These interactions were studied because they qualitatively
resemble the relatively soft repulsions and weak, long range attractions predicied 10 act between
membrane proteins. Note that when the two potentials are differentiated, the repulsive components
of the resulting forces are identical. (From Abney, J. R. and Owicki, J. C., Chem. Phys. Leut., 164,

73, 1989. With permission.)

density they appear very similar. Such a density and interaction dependence
arises because, at low densities, attractive interactions induce partial aggregation
of the solute. This leads to greater short range organization in the presence of
altractions and a better defined structure in the radial distribution function. In
contrast, at high density, particles are so close together that further aggregation
cannot occur. Repulsions then dominate organization,* and, consequently,
g(r) has a similar, highly structured appearance for both fluids. Modern pertur-
bation theories of fluids'8:936 are based on the fuct that repulsions dominate fluid

structure at high density.

D. Freeze-Fracture Electron Microscopy

In the previous section, it was shown that numerical methods can be used to
obtain information on the distribution of interacting membrane proteins. Such
information can also be obtained experimentally using freeze-fracture electron
microscopy.**

1. Overview of Technique
Freeze-fracture electron microscopy provides a method of visualizing the
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FIGURE 6. Panicle configurations for purely repulsive and aitructive-plus-repulsive interactions
at relutively low and high concentrations. Configurations contaiping 256 panticles were generated by
Monte Carlo simulation for the two potentials shown in Figure S at two different reduced densities,
p*= pcz. The conligurations correspond 1o (A) purely repulsive potential, p* = 0.3; (B) atiractive-
plus-repulsive potential, p* = 0.3 ; (C) purely repulsive potential, p* = 0.8; and (D) attractive-plus-
repulsive potential, p* = 0.8. In all cases, periodic boundary conditions were invoked. The domi-
nance of attructions at low densities is reflected in the marked tendency toward “paichiness” in Panel
B relative to Panel A, while the dominance of repulsions at high densities is reflected in the similarity
of Panels C and D.

positions of individual proteins in membranes. In the freeze-fracture technique,
the sample of interest (a small piece of tissue, a drop of suspended vesicles, etc.)
is rapidly frozen. If the freezing is rapid enough,?’ the process preserves a
snapshot of the sample as it existed at the time of freezing, and the relative
positions of membrane proteins are thus preserved. If the frozen sample is then
fractured, the cleavage plane tends to run preferentially between the two leaflets
of the bilayer, and protein positions are manifest as pits and bumps on an
otherwise smooth surface. A replica of this surface can be prepared by shadow-
ing with a heavy metal to give contrast and then stabilizing the shadow with a
carbon film. This replica can be viewed under the electron microscope, and the
positions of individual proteins observed. Distribution functions can be deter-
mined directly from the electron micrographs by digitizing protein positions and
then following the prescription given in Equation 10. See Figure 8.
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FIGURE 7. Radial distribution functions for purely repulsive and attractive-plus-repulsive inter-
actions at relatively low and high concentrations. Distribution functions were computed for the two
potentials shown in Figure 5 using the configurations shown in Figure 6 und the prescription outlined
in Figure 4, Results were averaged over bins of width Dr = 0,05r every 10 cycles for a total of 2000
10 5000 cycles (i.e., results were averaged over 200 to S00 configurations). A cycle corresponds to
one sequentially attempied perturbation of every panticle in the system. The radial distribution
function gives a measure of the order in the fluid as a function of rudial distance, r. Order is lowest
for r* = 0.0. As the density of the system is raised, order increuses and coordination shells develop,
corresponding Lo regions of enhanced (g > 1) and diminished (g < 1) occupancy. Concomitantly, the
average center-to-cenler distance, determined by the location and area of the first peak in g(r), de-
creases. (A) Atr* =0.3, panticies are significantly closer in fluid A (solid line) than in fluid R (dotted
line), brought together by attructive interactions. (B) At r* = 0.8, the identical repulsions dominate
the structure of both fluids, and the two distribution functions are virtually superimposable. For these
potentials, the continuous initial rise in g(r) has its origin in the soft potential used in the simulations.
In contrast, a discontinuous initial rise is observed in simulations of radislly symmetric excluded-
volume potentials, (From Abney, J. R, and Owicki, J. C., Chem. Phys. Lei1., 164, 73, 1989. With
permission.)

Like Monte Carlo, freeze fracture is a powerful technique that cannot be
applied without caution. High resolution studies, such as those described here,
require very rapid freezing to minimize protein rearrangements. In addition,
replicas should be free of plastic deformation and should be of sufficient quality
toresolve individual proteins. Finally, some of the studies discussed here require
that the membrane contain only a single type of protein free of cytoskeletal
constraints.
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2. Resulis

Freeze-fracture (and closely related freeze-etch) techniques have been exten-
sively used to study membrane architecture, and they are a significant source of
information on membrane heterogeneity. Although the focus is typically on long
range organization, freeze-fracture pictures can also be used to study short range
organization. Here we describe those studies ultimately aimed at relating short
range protein organization to protein-protein interactions through the use of
distribution functions. In the Appendix, we briefly discuss relevant results
obtained from purely statistical methods.

Distribution functions have been used to characterize the short range orga-
nization of proteins in a variety of systems. In some of these systems, the identity
of the. proteins under study was well defined: nuclear pores,®® gap junction
connexons,262840 yarious virus particles,*®4! surface immunoglobulin,?? rho-
dopsin,® and BR.*? In other systems, the proleins under study were less well
characterized and only the membrane was identified: mouse fibroblasts,%
human and pig erythrocytes,“ barley cells,*S and A. laidlawii.*7 Especially
clean radial distribution data have been obtained for gap junctions, because in
this system there is only one protein species and the positions of proteins are not
influenced by cytoskeletal constraints (see Figure 9).

For essentially all of the systems studied, g(r) was found to have a fluid-like
form, rising from zero at small r, displaying one or more oscillations at inter-
mediate r, and finally decaying to one at large r. This functional form confirms
the fluid-like character of the membrane and demonstrates that the prolein
molecules interact, since in the absence of interaction g(r) = 1 for all values of
r. However, the precise functional form of the interaction cannot immediately be
deduced simply by looking at g(r). This is because the radial distribution function
depends on many variables, including density, interaction potential, molecular
shape, and the distribution of particle sizes. In the next section, it is demonstrated
that one can extract the precise form of the effective interaction from a
knowledge of distribution functions.

IV. MEASUREMENT OF PROTEIN-PROTEIN
INTERACTIONS

In this section, we move away from the realm of postulated forces and
describe experimental attempts to measure the real forces that act between
proteins in membranes. Such measurements have a twofold purpose. First, they
might provide verification for theories of protein-protein interactions. For
example, is there evidence for a lipid-mediated protein-protein interaction as
suggested by theory? Second, they facilitate determination of thermodynamic
and kinetic properties of the membrane, even in the absence of a detailed
understanding of the origins of the measured forces, as will be seen later,
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FIGURE 8. High magnification enlargement of an clectron microgruph of a mouse liver g
junction segued into a digitized computer representation. The region shown was in the interior of it
junction; the junction boundary is not visible. In the micrograph (upper region) proteins are visib.
4$ “bumps" aguinst the comparatively smooth membrane interior. The junction contains only asing.
type of prolein, aggregated into a plaque at a density of 9,330 proteins/um?, The computer repn
sentation (lower region) shows particle coordinates obtained by manually digitizing the micrograp
using u computer digitization tblet. Proteins are drawn to their 7 nm crystallographic diameter, an
protein positions are probably accurate to within 0.5 to 1.0 am. The computer representation wi
compured with the original microgriph 10 check for misentered or missing particles. (Afier Abne;
J. R., Braun, J., and Owicki, J. C., Biophys. J., 52, 441, 1987. With permission.)

A. The Inverse Problem

The exact analytical expressions relating distribution functions and forces ar
very complicated. Therefore, it is quite common to use numerical, rather tha
analytical, methods to study interacting particles in fluids, as discussed previ
ously. It is also quite common to make certain assumptions that simplify th
analytical expressions (e.g., that pairwise additivity holds) and then to procee
with an analytical analysis of interacting particles in fluids. The simplifie
analytical (integral) equations can be used to calculate distribution function
from postulated forces and could therefore have been discussed in the previou
section. However, the integral equation formalism was omitted previous|
because the distribution functions it yields are approximate, whereas th
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FIGURE 9. Radial distribution function for proteins within a mouse liver gap junction. The
distribution function was computed using the prescription given in Equation 10 and bins of widih Ar
=(0.75 nm. The average center-to-center spacing of the proleins is approximately 10.6 nm, and up
tothree partially ordered coordination shells are visible. The distribution tunction is very reminiscent
of that found for interucting particles in simple fluids (sce Figure 7). The doted error envelope gives
a measure of the uncertinty in the distribution function and represents the standurd deviation
obtained by separate analysis of two regions of the suine junction, euch of which contained about
2000 particles. The small error bars suggest that there ure only minimal differences between different
regions of the same junclion, Larger differences are seen when distribution functions are computed
from different jum:lions.zll (From Abney, J. R., Braun, J., and Owicki, J. C., Biophys. J., 52,441,
1987, With permission.)

distribution functions calculated using modem simulation methods are essentially
exact. Here, we will focus on how integral equations can be used to deduce the
form of the effective force from a measured distribution. This is the classic
“inverse problem,” which is not easily soluble using exclusively numerical
methods.

There are many integral equations, and each involves a different set of
assumptions. We focus here on the Percus-Yevick (PY) and Bom-Green-Yvon
(BGY) integral equations because they have been extensively exploited in
studies of protein-protein forces in membranes. We present the equations and
discuss those underlying approximations and assumptions that are pertinent to
the issue of extracting protein-protein forces from protein distributions obtained
from freeze-fracture electron micrographs; detailed derivations and more com-
plete discussions of these equations can be found in most statistical-mechanics
textbooks. 81923
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1. The Percus-Yevick (PY) Equation
The PY equation is a relationship between the effective pair potential and the
two-particle distribution function:

g(r) exp[:—(;—?] =1+ p:I:g(s) 1- exp[%:' [2(q)-1]2nsds (14)
B 8

The PY equation is based on pairwise additivity and the so-called PY ap-
proximation, which is meant to model approximately the effects of high-order
correlations in the positions of molecules. The PY approximation and thus the
PY equation are valid at low densities, where the range of the protein-protein
force is smaller than the average interparticle separation. If the two-particle
distribution function is known, the PY equation can be solved directly for the pair
potential.

2. The Born-Green-Yvon (BGY) Equation
The Bom-Green-Yvon equation is a relationship between the effective pair

force and the two- and three-particle distribution functions:

nelr - & o(3)
kT dfl dgr( )] =f(r)+p({f(s)2£ L—E(%ﬂscosededs (15)

(Note that the BGY equation is writien here in a polar coordinate system; see
Figure 3.) Like the PY equation, the BGY equation is based on pairwise
additivity. However, no additional approximations are involved, and the BGY
equation is exact if the potential is pairwise additive. (The BGY equation does
become approximate if the three-particle distribution function is not known and
the superposition approximation, Equation 9, is invoked.) The left-hand side of
the BGY equation represents the statistical mean force on a particle.'89 The
BGY equation shows that the mean force arises from two sources: the direct force
exerted by the particle at 7, f{r), and the components along r of the forces exerted
by particles at all other positions in the plane, the integral. If the two- and three-
particle distribution functions arc known, the BG Y equation can be solved for the
pair force. 'The pair force can then be integrated to yield the pair potential.

3. Comparison of the PY and BGY Equations

Both the PY and BGY equations can be used to extract important information
on interparticle interactions. The primary advantage of the PY equation is that
it involves only the two-particle distribution function, and thus when g(r) alone
is known, as is the case for three-dimensional fluids, the PY equation is typically
invoked. However, the PY equation is not exact, and the significance of the
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potential derived from the PY equation is obscured by this fuct. The primary
advantage of the BGY equation is that it allows the determination of effective
pair potentials without recourse to approximation (if pairwise additivity holds).
Thus, when both the two- and three-particle distribution functions are known, the
BGY equation is the equation of choice.

The accuracy to which the PY and BGY equations reproduce the interaction
generating a given distribution has been carefully tested.?’? In the test studies,
Monte Carlo simulations were used to generate particle configurations and
distribution functions for the purely repulsive and attractive-plus-repulsive
potentials shown in Figure 5. The distribution functions were then inserted into
each equation and solutions for the potential that generated the distributions
obtained. Accuracy was determined by assessing how well each equation
reproduced the starting potentials that were used to generate the distributions. It
was found that the PY equation did not yield an accurate potential for protein
concentrations typical of biological membranes; in contrast, the BGY equation
was accurate for particle concentrations ranging from infinite dilution to crystal
packing.

At low particle concentrations, the PY and BGY equations become identical,
reducing to the “Boltzmann-like” relationship

g(r)= exp[—u(r) / kuT!] (16)

This relationship shows that the structure of the fluid is determined entirely by
pair interactions at low particle densities, which is reasonable since at low
densities high-order interactions will be negligible,

B. Application to Freeze-Fracture Electron Micrographs

Twodifferent methods have been used to characterize the real effective forces
exerted by membrane proteins. In the first (indirect) method, real protein
distribution functions were computed from freeze-fracture data, and an attempt
was then made to fit the data by postulating forms for the force and using an
integral equation or Monte Carlo simulation to calculate theoretical g(r)s against
which the experimental data were compared. The postulated force that yielded
the best agreement between theory and experiment was then identified as the
most likely interprotein force, In the second (direct) method, real distribution
functions were again computed from freeze-fracture data. However, these
distribution functions were then inserted into an integral equation and the
equation solved directly for the real effective force that gave rise to the measured
distributions. The first method has been more extensively exploited, but the
second method yields more satisfying results.

For a variety of native membranes, a comparison has been made between
theoretical and experimental g(r)s in an attempt to characterize interprotein
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interactions. In the simplest of these studies, the distributions of intramembrano
particles on pig erythrocytes,* surface immunoglobulin on mouse B lymph
cytes,*? and virus-related molecular assemblies on the surfaces of mou:
fibroblasts*’ were examined. Radial distribution functions were computed fro
experimental data and compared with the distribution function for particles in
noninteracting system (g(r) = 1 for all r). For all three systems, it was conclude
that protein positions were influenced by nonidealities, but no attempt was mac
to elucidate the precise nature of the interactions influencing distribution, e.g
attractive vs, repulsive, short-range vs. long-range, etc.

In the remaining studies, a more serious attempt was made to identify tl
protein-protein force dictating distribution. These more sophisticated studii
have focused on a relatively small number of membrane systems and a
therefore discussed on a system-by-system basis.

1. Human Erythrocyte Membranes

Radial distribution functions have been most extensively used to characteri:
protein organization in the erythrocyte membrane. As was the case with tt
systems mentioned previously, computation of g(r) for erythrocyte proteir
immediately demonstrated that distribution was nonideal. In fact, the short rang
organization of human erythrocyte proteins mirrors closely the theoretic:
organization of cylindrical proteins interacting through a repulsive force whos
range slightly exceeds the proteins’ excluded-volume diameter. Howeve
erythrocyte distribution functions, as well as those of a barley mutant, can als
be fit to the theoretical distribution of elliptical particles interacting purel
through an excluded-volume force.*® It is thus clear that the form of the interac
tion deduced from distribution functions is somewhat sensitive to particle shap
a fact that illustrates that distribution functions are indeed complicated functior
of many variables.

2. Nuclear Membranes
The radial distribution function of nuclear pores has been followed as

function of cell type and stage in the cell cycle.’® The data show that during th
S phase of the human lymphocyte and HeLa cell cycles, the pore radi
distribution function is structureless (i.e., is always unity), whereas during the G
phase of the human lymphocyte cell cycle and the early G1 phase of the Hel
cell cycle, the distribution function is structured. Thus, pore distribution appeas
to vary during the cell cycle. The interactions giving rise to these different por
distributions were tentatively identified by inserting various repulsive force
into the PY equation and calculating the associated g(r)s. The experiment:
distribution functions were reasonably reproduced assuming a long rang
repulsive interaction between S-phase pores and a short range excluded-volum
repulsive interaction between G1 and GO pores. Unfortunately, the origins an
biological significance of these forces were not identified.
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3. Acholeplasma laidlawii Membranes

Distribution function approaches have shown that lipid-protein interactions
may be responsible for the aggregated state of proteins in A. laidlawii mem-
branes.#’ This was demonstrated by deriving an explicit functional form for the
lipid-protein interaction and using the PY equation to calculate the associated
distribution function. It was possible to reproduce a number of different distri-
bution functions derived from A. laidlawii membranes containing different
protein densities simply by varying the strength of the lipid-protein interaction
- and its correlation length.

4. Reconstituted Membranes

One criticism that can be leveled against the work discussed above is that the
systems under study were multicomponent, whereas the simulalions and equa-
tions used to analyze the data rigorously model the properties of fluids containing
only asingle solute species. Reconstitution of a single membrane protein species
into artificial bilayers can be used to overcome this problem. Reconstitution is
also useful because it is well suited for precisely characterized manipulations of
lipid composition and protein concentration, although it can induce unfavorable
membrane curvature and lead to a loss of protein asymmetry.

Two proteins, BR and rhodopsin, have been studied by reconstitution intoa
variety of membranes.*? The distribution of reconstituted BR was always found
to be consistent with a pure hard-disk repulsive interaction between molecules,
independent of the structure of the host lipid. In contrast, the distribution of
rhodopsin suggested that the molecules were interacting through a longer range,
possibly electrostatic repulsive interaction. However, in the thickest membrane
(di 18:1 trans-PC), rhodopsin exhibited a partially aggregated distribution con-
sistent with the existence of attractive lipid-mediated protein-protein interac-
tions. Apparently when the membrane is thinner than the protein, the stretching
of lipid required to match lipid and protein domains does not propagate
significantly through the bilayer, and therefore no lipid-protein interaction
results. However, when the membrane is thicker than the protcin, lipid tilt (or
some other conformational change) does propagate through the bilayer, and a
lipid-mediated interaction results that significantly affects protein distribution.

S. Gap Junctions

Finally, we tum attention to the one study in which an integral equation has
actually been inverted and a real effective force between membrane proteins
directly measured.262% The system analyzed, the mouse liver gap junction, was
ideally suited to a fluid-theoretic study of forces because it contains only asingle
type of protein whose distribution is not determined by extramembraneous
attachment. The interprotein force was obtained by inserting two- and three-
particle distribution functions calculated from freeze-fracture data into the BGY
equation. The force was found to be repulsive for all values of the interprotein
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FIGURE 10. Effective pair potential for proteins within a mouse liver gap junction. The puir
potential was determined by first computing the pair force using the BGY equation and then
integrating the pair force 10 obtain the pair potential using Simpson's rule. The quantitics inseried
into the BGY equation were the radial distribution function (shown in Figure 9) and a three-particle
distribution function (not shown). Analytical conditions were identicul to those described in Figure
9. The vertical bass show the standard deviation associsted with each value of the potential. The most
significant feature of the potential is that it is everywhere repulsive, consistent with excluded-volume
and electrostatic interactions between the identical junction proteins. (From Abney, J. R., Braun, J.,
and Owicki, J. C., Biophys. J., 52, 441, 1987. With permission.)

spacing, r, and the associated potential (see Figure 10) was significant relative
1o thermal energies (k57) for r < 12 nm, i.e., over distances that exceed the
average interparticle spacing in the system. The measured force is consistent
with excluded-volume and electrostatic repulsion between gap junction pro-
teins.

It might have been assumed a priori that protein molecules in the junction,
which are highly aggregated, would interact through some sort of attractive force
that induces aggregation. However, this is not the case; the force between
junctional proteins was determined to be repulsive forall values of the interprotein
spacing, Instead, the impetus for protein aggregation lies in interactions among
junctional proteins and glycosylated proteins within the membrane; see Figure
11, Toafirstapproximation, junctional proteins are immiscible with glycosylated
membrane components, and protein aggregation into the junction represents a
lateral phase separation that acts simply to separate immiscible species. At a
more detailed level, the strength and range of the interactions fine-tune junction
organization and help determine junction size and geomeltry,
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FIGURE 11. Pressure-balance model of the mouse liver gup junction. Gup junctions are dense
aggregates of identical channel proteins that bridge the intercellular space beiween two closely
apposed cells, thereby facilitating intercellular communication, The orguanization of the junction is
not dictated by extramembranous constraints but rather reflects only interactions among membrane
components. (A) Prior to junction formation, channel precursors (connexons) and the membrane
anchors of the glycocalyx intermix. (B) Channel (dyad) formation occurs as connexons from
neighboring membranes fuse through incompletely understood mechanisms. As a consequence of
the fusion, adjacent regions of membrane are pulled into close proximity, leading to unfuvorable
interactions among elements of the glycocalyx. (C) These unfavorable interactions are minimized
by a lateral phase separation that leads 1o the coalescence of the dyads to form the junction and the
exclusion of the glycosylated species to form the extrajunctional glycocalyx. Junction size is
mainlained by a balance between a junctional pressure, [, that arises from repulsions between dyads
(Equation 17), and an extrajunctional pressure, T1,, that arises from interactions amony sugar resi-
dues in the glycocalyx. (Interactions between sugar polymers in the glycocalyx, which can include
elastic deformations, represent another type of protein-protein interaction not explicitly discussed in
the text.) Bending near the edge of the plaque has been exaggerated to delineate more clearly the
junctional and extrsjunctional spaces. (From Abney, J. R., Braun, J., and Owicki, J. C., Biophys. J.,
52, 441, 1987. With permission.)

V. THERMODYNAMIC FUNCTIONS AND TRANSPORT
PROPERTIES

To illustrate further the utility of distribution functions and effective forces,
we now show that these quantities are related to thermodynamic and transport
properties of simple nonideal fluids. Thus, freeze-fracture micrographs and an
inverse-problem force analysis provide data that can be used to determine how
thermodynamic and transport properties of the membrane are influenced by the
membrane's nonideal, fluid-like character, Of course, fluid and nonfluid (e.g.,
cytoskeletal) effects must be considered in conjunction when analyzing the
behavior of biological membranes, and the equations must be generalized if the
membrane contains more than one protein species.
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A. Thermodynamic Functions

If the particles in a simple fluid interact through pairwise-additive forces, ali
of the thermodynamic properties of the fluid can be expressed in terms of the
radial distribution function and the effective protein-protein force, We focus
here on computation of the osmotic pressure, because it has proven to be one of
the more useful membrane properties;2¥:3548 the reader is referred to statistical-
mechanics textbooks for other examples, '8:19.23.24

Protein molecules behave like a solute in a lipid solvent and therefore
contribute to the colligative properties of the membrane. The osmotic pressure,
=, is a particularly familiar colligative property and is given by the pressure
equation

T=p4,T + (o7 /4) /P )elr)2reer )

The first term in Equation 17 is ideal in origin (the van’t Hoff equation), whereas
the second term (which depends on the force and radial distribution function) is
nonideal. In membrane systems, the nonideal term can make the dominant
contribution to the total osmotic pressure,?® and the osmotic pressure can
probably deviate at least a fewtold from its ideal value.2833

B. Transport Properties

As may be intuitively obvious, the mobility of membrane proteins is also
affected by protein organization and interprotein interactions. In fact, theoretical
expressions have already been derived that relate protein mobility to both
distribution functions and forces. These expressions neglect the so-called
hydrodynamic interaction, a dynamic protein-protein interaction mediated by
protein-induced perturbation of solvent flow.

Two types of translational diffusion have been studied. The first, mutual
diffusion, refers to the dissipation of gradients or fluctuations in protein
concentration*” and is the process monitored in postelectrophoresis relaxation

experiments.’¢ The mutual-diffusion coefficient, D™(p), is given by the expres-
sionis48.49

D"(p) .. P = 1 9(r)
D, —l+2kuT (j,rf(r)[g(r)+2p T ]andr (18)

where D, is the bare-diffusion coefficient, which describes protein diffusion in
the absence of interaction (i.e., at infinite protein dilution).

The second, self diffusion, refers to the mean-square Brownian motion of
individual proteins*® and is the process monitored in fluorescence recovery after
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photobleaching experiments.>!33 The self-diffusion coetficient, D*(p), is given
-by the exprcssion""’o-"

D*(p) p_ =
D, ﬂ+“JyMMWMMW (19)

where p(r) is the solution of a complicated integrodifferential equation that
depends on fir), g(r), and g®)(r.s,6).

Equations 18 and 19 have been used to demonstrate that interprotein interac-
tions can have significant effects on the two diffusion coefficients. For example,
at finite protein concentrations, interactions cause the two diffusion coefficients
to differ, Moreover, in the absence of hydrodynamic interactions, each diffusion
coefficient can differ a fewfold from its ideal value, Dy. See Reference 14 fora
more detailed discussion.

VI. LONG RANGE PROTEIN ORGANIZATION

‘Inthe previous sections, it was demonstrated that protein-protein interactions
can profoundly influence the short range organization of proteins within the
membrane. In this section, we extend this basic concept and demonstrate that
protein-protein interactions and membrane fluidity can also influence long range
protein organization, i.e., organization over distance scales that range from
several times the average interprolein spacing out to many microns.

Ideally, this section would be written in analogy with our discussion of short
range organization and would begin with rigorous mathematical formulae that
relate long range protein organization to interprotein interactions. The predic-
tions of the formalism would then be compared with the appropriate experimen-
tal results. Unfortunately, there is no simple and unified (e.g., fluid theoretic)
formalism that describes all of the complicated relationships between interac-
tions and long range protein organization. Instead, these relationships must be
explored on a case-by-case basis. Thus, here we examine the effects that protein-
protein interactions have on several specific determinants of long range organi-
zation: fluctuations, aggregation, phase separation, crystallization, and field-
induced redistribution.

A. Fluctuations and Membrane Domains

On a thermodynamic scale, membrane systems are small, being limited in
both spatial extent and number of constituent macromolecules. Thus, in mem-
branes, fluctuation effects can be significant, and local properties can differ
considerably from average properties. Here we focus on the relationship be-
tween fluctuations and domain formation, a relationship that has been well
characterized for lipid systems (see Reference 54 and references therein). In
particular, we show that fluctuations can lead to the creation of protein domains,
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whose properties are determined by fluctuations in membrane composition and
membrane curvature as well as by protein-protein interactions.

1. Fluctuations in Membrane Composition

The molecular coordinates shown in Figure 6 reveal that, even within asingle-
phase membrane of well-defined composition, there appear to exist relatively
large protein domains characterized by different densities of protein. This type
of long range organization arises when number density in the membrane is low;
number fluctuations can then become large and the local density can differ
markedly from the average density p. However, density fluctuations are influ-
enced not just by average particle density but also very significantly by
interactions between membrane components, as can be seen from the following
simple physical arguments.

Consider an open region of membrane of area A, which proteins are free to
enter and exit. On average, this region will contain <N¥> = pA molecules, where
the brackets < > denote an ensemble average. However, the actual number of
molecules within the region will fluctuate about this average, These fluctuations
can be characterized by the variance in particle number, 6, which can be
computed from the grand canonical partition function.'%:!9224 The result is*

k,T<N>

2___ NZ —-<N 2=_____
oy =<N*>-<N> (an/ap)T (20)

where A is the osmotic pressure, given by Equation 17, and (9A/dp)y is the
isothermal osmotic compressibility. Note that since the dominant contribution to
A can arise from the interaction dependent term in Equation 17, the variance, i.e.,
the magnitude of the fluctuations in particle number, can be markedly affected
by interactions. In particular, repulsive protein-protein interactions will tend to
reduce fluctuations and the size of domains, since repelling particles will tend to
maximize distance from their neighbors. In contrast, attractive protein-protein
interactions will tend to enhance fluctuations and the size of domains, since
attracting particles will tend to aggregate. See Reference 35 for more details.
The domains created by fluctuations in protein density are dynamic and
probably short lived (with a lifetime dictated by the appropriate diffusion
coefficient). However, they may persiston atime scale that is significant for lipid
diffusion and diffusion-controlled reactions. In addition, in a static picture of
membrane protein organization, such as that obtained from electron microscopy,
these domains may be misinterpreted as “permanent” membrane features.

2. Fluctuations in Membrane Curvature (Undulations)

It has been shown that fluctuations in protein concentration can give rise to
a long range ordering of membrane proteins that is influenced by interactions.
This is also true of fluctuations in membrane curvature, which lead to variations
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or undulations in local membrane shape. When the membrane undulates,
proteins can aggregate in regions of optimal membrane curvature or cun be
excluded from regions of inappropriate curvature, Moreover, membrane curva-
ture can alter the way in which proteins interact and thereby further influence
long range organization.

To make these ideas concrete, consider two specific examples. Spontaneous
thermal fluctuations in the curvature of the erythrocyte membrane appear to
induce the formation of glycoprotein-poor domains wherever membrane curva-
ture is concave towards the extracellular space.>S Such an ordering of the glyco-
protein appears (o arise because concave curvature forces extracellular sugar
residues into atypically close proximity. This leads to strong repulsive interac-
tions between the glycoproteins that are best minimized by their exclusion from
concave regions of membrane.

Conversely, a long lived (age-related) curvature of the lens membrane
appears to arise when the dominant protein of the lens membrane, MIP,
aggregates into organized crystalline arrays. MIP arrays are located in concave
regions of membrane and excluded from adjacent convex regions of mem-

brane;36-58 see Figure 12. Again this unusual organization is probably stabilized

by interparticle interactions. Charged amino acid residues on MIP s extracellular
domain are expected to interact repulsively with like-charged residues on MIP
molecules in the very closely apposed membrane of the adjacent cell. Such a
repulsive interaction would lead to the observed structural motif: a MIP-rich
region in one cell membrane next to a MIP-poor region in a closely apposed
membrane of an adjacent cell. MIP organization may be further stabilized by an
attractive interaction between the protein and negatively charged lipids, which
would cause excess lipid to accumulate in membrane regioas in neighboring
cells that are close to MIP-rich membrane.’

B. Protein Aggregation

Membrane proteins often are organized into sharply demarcated domains,
Forexample, large-scale segregation of protein can arise if there are macroscopic
changes in the properties of the membrane, such as a lateral phase separation or
protein crystallization; such macroscopic segregation phenomena will be dis-
cussed later. In this section, we analyze segregation as it is manifest in the
somewhat smaller-scale “aggregation” of membrane proteins, The discussion
will focus on the role that protein-protein interactions play in determining the
distribution of aggregate sizes and aggregate shapes.

Aggregation phenomena present unique problems when one is trying to
understand how forces atfect organization because all proteins cannot be treated
equivalently. The inequivalence arises because proteins on the periphery of the
aggregate experience forces that differ markedly from those experienced by
proteins in the interior of the aggregate, since proleins on the periphery are
missing neighbors on one side, while those in the interior are not. Consequently,
new physical phenomena, such as edge tension, need to be considered when one

Molecular Crowding and Protein Organization 21!

FIGURE 12, Relationship between membrane undulations und MIP protein organization in the len
plasma membrane. MIP is segregated into large crystals in regions of the plasma membrane that ar
concave toward the extracellular space and is excluded from adjacent convex regions of membran
in the same cell and neighboring cells. It is thought that the curvature in the membrane is induce:
cither by a protein cross section that is nonuniform and larger on the cyloplasmic side, or by protein
protein interactions between charged amino ucid residues. In addition, the aliemating patiem of M1I
organization muy be stabilized by an attructive lipid-protein interaction between positively charge:
amino acid residues on the protein and negatively charged lipids (black head groups) in th
membrane of the adjucent cell. (From Zampighi, G. A, Hall, J. E., Ehring, G. R., and Simon, S. A
J. Cell Biol., 108, 2255, 1989, With permission.)

is analyzing the properties of an aggregate. One nice feature of aggregation an(
associated phenomena such as edge tension is that they are amenable to a flui
theoretic analysis; in fact, it is possible to write the edge tension of the aggregat
boundary as an integral over the interparticle force and radial distributiol
function (see Reference 59, and references therein). However, to date, aggrega
tion in membranes has only been analyzed within the confines of thermodynami
models and computer simulation methods. Confirmation of the predictions o
these models must await further experimental work, which could be based ol
freeze-fracture electron microscopy or fluorescence energy transfer.%

Thermodynamic models have been used to analyze the role that protein
protein interactions play in determining aggregate size, when monomers are il
equilibrium with aggregates.®"52 A Gibbs free energy function, which accounte:
for electrostatic repulsion between proteins within the aggregate, was con
structed using relatively simple arguments. By minimizing the free energy, thi
dependence of the size and number of aggregates on edge tension, electrostati
protein-protein interactions, and protein concentration was determined. Physi
cally reasonable adjustment of these parameters led to the following results. A
increase in either the electrostatic repulsion between proteins or in the edg
tension of the aggregates reduced the fraction of particles that existed i
aggregates and increased the fraction that existed as monomers. However
increased electrostatic repulsions favored the formation of a relatively larg
number of small aggregates, whereas increased edge tension favored the forma
tion of a small number of large aggregates.
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Monte Carlo simulation has been used to analyze the role that protein-protein
interactions play in determining aggregate shape, when monomers bind irrevers-
ibly to aggregates.53® The analyses always are based on some postulated
aggregation mechanism, and two models of aggregation are frequently invoked:
in “diffusion-limited aggregation” all monomers bind to a single, stationary
aggregate, while in “cluster-cluster aggregation" the monomers bind to different
mobile aggregates, and aggregates bind to other aggregates. Whichever model
isinvoked, if proteins always bind whenever they touch, loose stringy aggregates
are formed. However, if proteins bind only a fraction of the time they touch, or
if they always bind upon touching but can subsequently release and rebind, more
compact aggregates are formed. See Figure 13.

C. Lateral Phase Separations

As mentioned previously, the long range organization of membrane proteins
can be markedly altered by a change in the macroscopic state of the membrane,
such as accompanies a phase transition. In keeping with the theme of this article,
we address phase behavior by focusing on how membrane phase transitions and
resulting phase structure (i.e., molecular organization) are influenced by protein-
- protein interactions.

A pure phospholipid bilayer containing only a single species of lipid under-
goes an approximately first-order phase transition at some well-defined tem-
perature, Ty; this transition temperature is determined largely by the nature of
lipid-lipid interactions in the system. When protein molecules are added to the
membrane, the phase behavior becomes more complex. The phase transition can
take place over a broader temperature range, and the membrane can phase-
separale into protein-rich and protein-poor domains. The more complex phase
behavior of lipid-protein systems has its origins in lipid-protein and protein-
protein interactions, as well as any protein-induced perturbations in lipid-lipid
interactions.

Theoretical studies of interaction dependent phase behavior have focused
primarily on describing effects arising from lipid-protein and lipid-mediated
protein-protein interactions. The analyses huve been based on phenomenologi-
cal, thermodynamic models, 53-8 as well as more detailed statistical mechanical
models and computer simulations.*® Although direct protein-protein interac-
tions have not been incorporated into these models, the qualitative effectof such
interactions on membrane phase behavior seems intuitively clear. Attractive
interactions should enhance the formation of protein-rich domains, while repul-
sive interactions should inhibit it.

Experimental studies have also been aimed at elucidating the role that lipid-
protein and lipid-mediated protein-prolein interactions play in determining
phase behavior. In these studies, proleins were reconstituted into vesicles
containing PCs of various acyl chain lengths. In such vesicles, bilayer thickness
varies linearly with chain length.”® Consequently, the vesicle system is
well suited to simple manipulation of the match between hydrophobic and
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(B)

FIGURE 13. Influence of sticking probubility on the final (1 = o) shape of cluster-cluster aggre-
gates on 4 64 x 64 syuare lattice, The probability of sticking per collision, Pagg, is (A) 1 or (B)0,001;
the area fraction of proteins, C, is 20% for both membranes. Note that the cluster is more compact
when P,gq=0.001 than when P o = 1. Weaker sticking leads 1o more compact structures because
proteins can penetrute farther into the cluster before final, irreversible binding occurs. (From Saxton,
M. J., Biophys. J., 61,119, 1992. With permission.)

hydrophilic portions of the lipid and protein and any associated mismatch-
induced lipid-protein or lipid-mediated protein-protein interaction.! The ex-
periments demonstrated that the in vitro lateral distributions of rhodopsin,*?
BR.47! and reaction center and antenna proteins from the photosynthetic
apparatus of Rps sphaeroides™ are sensitive to membrane thickness. Similar
conclusions have emerged from studies of the in vivo distribution of proteins in
the plasma membranes of A. laidlawii*’ and Ustilago avenae,

The most obvious interpretation of these experimental results is that lipid-
mediated protein-protein interactions influence distribution, althoughthe results
could also reflect thickness dependent changes in protein conformation. The
strength and range of the lipid-mediated interactions deduced from the data show
reasonable quantitative agreement with theoretical prediction, although at least
some of the data suggest that the lipid-mediated protein-protein interaction is
weaker than predicted by theory. Part of this disparity may reflect the fact that
most theories of lipid-mediated interactions emphasize enthalpic contributions
to the potential, while ignoring entropic contributions that will tend to randomize
protein positions and so weaken the interaction. Recent theoretical work has
taken entropic effects into account and has thereby improved the agreement
between experiment and theory.*

D. Protein Crystallization

Another important macroscopic change in membrane state that fundamen-
tally alters long range protein organization is protein crystallization. Crystalline
order normally is thought of as something that is artificially induced during
attempts to determine structure with diffraction techniques;’® however, for
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membrane systems, crystalline order can actually be found in vivo. Forexample,
themembrane proteins BR, the ACHR, and the gap junction connexon are at least
sometimes found to exist naturally in crystalline states in cell membranes.

Considerable effort has been directed at trying to identify the factors that lead
to the crystallization of proteins. Although in many respects crystallization is a
finicky, protein-specific process, it is now known to be quite generally affected
by anumber of variables, including protein concentration and the protein-protein
force. Here we discuss results that illustrate the relationship between protein
concentration, interprotein interactions, and membrane protein crystallization.

It is reasonable to expect that protein-protein forces will influence the
formation of an ordered system such as a crystal, and, indeed, crystallization can
sometimes be induced if the force is changed in an appropriate way. Forexample,
under the influence of excluded-volume and electrostatic protein-protein inter-
actions, gap junction connexons organize into dense, aggregated (but
noncrystalline) plaques. However, if the protein-protein force is altered (pre-
sumably weakened) by adding cations such as calcium, which shield charge, the
connexon proteins crystallize.’s

Similarly, during attempts to crystallize membrane bound antibodies, it was
noted that excluded-volume interactions can influence the size of the crystalline
lattice.” This is manifest in the fact that as pH increases the lattice size grows.
An increase in pH leads to greater antibody flexibility and a larger effective
excluded-volume diameter; therefore, it was postulated that the observed in-
crease in lattice size was associated with antibodies spreading apart due to a pH-
induced increase in excluded-volume diameter.

Crystallization is also influenced by protcin concentration. In fact, if the force
is fixed and the protein concentration is raised sufficiently, a phase transition will
lake place that is accompanied by protein crystallization. This fact is exploited
in crystallization protocols that rely on binding proteins to artificial membranes:
as the proteins bind to the membrane they become more concentrated than they
are in solution and crystallization becomes more likely.”

E. Field-Induced Redistribution of Proteins

We close our discussion of long range organization by showing that the
effects of protein-protein interactions are also manifest when protein distribution
is altered by applying an electric field to the membrane. External electric fields
are commonly applied to membranes during postelectrophoresis relaxation
experiments,’° which are designed 10 measure diffusion coelticients. Moreover,
endogenous fields can arise naturally during development or following injury,
especially in epithelial tissues,” and could even lead to self-organization and
pattern formation of charged channel proteins.t-¥2

Under the influence of the lateral force exerted by an external electric field,
like-charged proteins will migrate towards one pole of a cell. This movement
creates a nonuniform distribution of protein over the cell surface. The extent of
the asymmetry indistribution is determined by many variables, but here we focus
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primarily on our favorite, the protein-protein force. One would anticipate that i
a nonideal system, repulsive interprotein forces would tend to reduce fiel
induced asymmetry because, as the electric force acts to push like-charge
proteins together at one side of a cell, repulsive interprotein interactions act :
acounteracting force that tends to push proteins apart. Indeed, such an effect ws
observed when the distribution of the IgE receptor on rat basophilic leukemi
cells was altered by a field.®> The distribution of the receptor in a field wz
reduced in asymmetry. The data could be satisfactorily fit to a model th;
assumed the proteins experienced an external electric force and an excludec
volume protein-protein force, but not to a model that assumed the protein
experienced an extemal electric force alone;®? see Figure 14.

VII. CONCLUSIONS

Two fundamental conclusions have emerged from the theoretical and experi
mental work described in this paper. First, membrane proteins interact with thei
neighbors. Second, these interactions are capable of profoundly affectin;
membrane organization and dynamics, In this section, we briefly review the mos
salient aspects of our discussion and comment on the directions that future wor!
in this field should take.

Protein-protein interactions are ubiquitous in membranes: indeed, all mem
brane proteins must interact, if only through excluded-volume forces. Experi
ment shows that the ““generic” protein-protein force is repulsive and probably ha:
its origin in short range excluded-volume forces and long range electrostati
forces. However, in some cases the protein-protein force may also contain a lon
range attractive component, which has its origin in protein-induced perturbatior
of membrane lipids.

Protein-protein interactions have widespread effects on membrane proper:
ties. Overshortdistance scales (on the order of the average interparticle spacing)
interactions lead to the creation of ordered but dynamic *“coordination shells’
around each protein. These shells are systematically observed in freeze-fracture
electron micrographs of membranes, and they influence thermodynamic anc
transport properties of the membrane, as well as chemical reaction rates and
energy transfer efficiencies. Fluid theory can be used to characterize the shells
and Lo measure the protein-protein force. Over long distance scales, interactions
affect phenomena as diverse as fluctuations in protein density, membrane phase
behavior, and membrane protein crystallization.

Future work in this field should be directed toward at least three goals. First,
experimental work should be directed at characterizing protein-protein interac-
tions more thoroughly, since the precise behavior of the membrane follows from
the precise nature of the protein-protein force. Second, theoretical work should
be directed at further exploring the connection between interactions and mem-
brane properties. For example, protein-protein forces affect protein mobility!¢
as well as protein organization, and it is possible that other membrane properties
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FIGURE 14. Influence of protein-protein interactions on the field-induced equilibrium distribution
of IgE receptors on rat basophilic leukemia cells. (A) An electric field, £;, of 15 V/cm was applied
1o the cells as indicated in the figure, and the relative surface concentration profile determined every
10 degrees over the cell surfuce. (B) The ungular distribution of protein (triangles) is poorly fit to an
ideal model (solid line) that neglects protein-proicin interactions, particularly in regions of the cell
where the applied field has induced the highest concentrution of protein, (C) In contrast, the
distribution is satisfactorily fit to a nonidesl model (sume delinitions) that accounts for excluded-
volume interactions between proteins. The effects of excluded-volume were modeled using Fermi-
Dirac statistics. It should also be possible to describe the interaction-dependence ol receptor
distribution by equating the flux produced by the electric field with the Iux produced by interaction-
dependent mutual diffusion down the concentration gradient.*8 (Figure modified afier Ryan, T. A,,
Myess, J., Holowka, D., Baird, B., and Webb, W. W,, Science, 239, 61, 1988, With permission.)

are interaction dependent as well. Finally, the effects of molecular crowding and
protein-protein forces on organization, dynamics, and function /n vivo should be
more thoroughly investigated.
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APPENDIX: ALTERNATIVE CHARACTERIZATIONS OF
PROTEIN ORGANIZATION

Thus far we have focused on studies of protein organization based on the
prevailing (fluid-mosaic) model of biological membranes. In this model, the
organization of proteins is dictated by protein-protein and lipid-protein interac-
tions and can be understood using fluid theory, Monte Carlo simulation, and
freeze-fracture electron microscopy. However, biological membranes have
additional attributes that are not incorporated into the fluid-mosaic model, as is
exemplified by protein attachment to an extramembranous skeleton. Therefore,
methods not founded in fluid theory have also been used to characterize protein
organization in biological membranes. The advantages and disadvantages of
these alternative methods relative to the fluid-theoretic approach will be briefly
discussed in this Appendix.

In some cases, the organization of proteins has been characterized by purely
statistical methods (reviewed in Reference 84). Such studies do not seek to
describe the mechanistic origins of prolein organization, but rather seek simply
to ascertain whether or not protein positions revealed in freeze-fracture electron
micrographs are “random.” A further goal of such work is to relate changes in
the “randomness” of protein organization to changes in biological activity. An
advantage of a simple statistical approach is that it is independent of an assumed
model; a disadvantage is that it gives little, if any, insight into membrane
behavior at the molecular level. In addition, the word random is simplistically
used as a synonym for uniform. In fact, a distribution is random if it is described
by an appropriate probability distribution, which can be distinctly nonuniform
(see Figures 6 and 7). ‘

In other cases, the organization of proteins has been characterized using
simulation techniques based on nonequilibrium membrane models.33.63.64.83-91
As was described in the text, classical Monte Carlo simulations are used to
generate the distribution of molecules in thermally equilibrated, interacting
fluids. Incontrast, these alternative techniques are used to generate nonequilibrium
distributions, such as those arising from random-sequential adsorption and
immobilization, as well as various forms of aggregation mediated by strong
contact attractions. Not surprisingly, equilibrium (Monte Carlo) and
nonequilibrium membrane protein distributions differ markedly; sec Figure 15,
The nonequilibrium distributions will be valid in centain situations but will not
describe protein organization in a truly fluid-mosaic membrane.
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FIGURE 15. Comparison of Monte Carlo and other simulation algorithms. Particle conligurations
and radial distribution functions were generated for hard disks (excluded-volume interactions)
occupying an area fraction C = 0.5. Monte Carlo simulations (A; dotied in C) model mobile,
interacting particles at thermodynamic equilibrium. Random-sequential packing (B; dashed in C)
models protein adsorption to the membrane foflowed by immediae immobilization. Detailed
discussions of these and other simulation algorithmns are given in Reference 90, and relerences
therein. Note that the configurations and distribution functions shown in the figure difter, indicaling
that particle organization depends on the physical mechamsms generating the distribution,
Also compare the discontinuous initial rise in g(r) shown here for the hard disk system with the
continuous initial rise in g(r) shown in Figure 7 for the long range interactions. (Aler Comell,B. A,
Middlehurst, J., and Parker, N. §.,J. Colloid Interfuce Sci., 81,280, 1981. With permission.)
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